sábado, 18 de mayo de 2013


Mathematics: rationalization!


Rationalize a fractional expression  is to convert the denominator a rational number.

 ,

We can see that all denominators are irrational numbers. thereby to rationalize the denominator of a fraction should amplify a suitable factor the denominator.

1) Rationalization of expressions of the form: 



2) Rationalization of expressions of the form: 

 you can amplify the expression for: 

\frac{{2}}{\sqrt{2}+\sqrt{3}} · \frac{{{\sqrt{2}-\sqrt{3}}}}{\sqrt{2}-\sqrt{3}} = \frac{{2({\sqrt{2}-\sqrt{3}}) }}{\sqrt{2^2}-\sqrt{3^2}} 

\frac{{2({\sqrt{2}-\sqrt{3}}) }}{\sqrt{2^2}-\sqrt{3^2}} = \frac{{2({\sqrt{2}-\sqrt{3}}) }}{{2}-{3}}

\frac{{2({\sqrt{2}-\sqrt{3}}) }}{{-1}} = {-2(\sqrt{2}-\sqrt{3}})